Trace Functionals of the Kontsevich Quantization
نویسنده
چکیده
We generalize the notion of trace to the Kontsevich quantization algebra and show that for all Poisson manifolds representable by quotients of a symplectic manifold by a Hamiltonian action of a nilpotent Lie group, the trace is given by integration with respect to a unimodular volume form.
منابع مشابه
0 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization
We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.
متن کامل2 00 1 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization
We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.
متن کاملTraces on algebras of parameter dependent pseudodifferential operators and the eta–invariant
We identify Melrose’s suspended algebra of pseudodifferential operators with a subalgebra of the algebra of parametric pseudodifferential operators with parameter space R. For a general algebra of parametric pseudodifferential operators, where the parameter space may now be a cone Γ ⊂ Rp, we construct a unique “symbol valued trace”, which extends the L2–trace on operators of small order. This c...
متن کاملSymmetrized Trace and Symmetrized Determinant of Odd Class Pseudo-differential Operators
We introduce a new canonical trace on odd class logarithmic pseudo-differential operators on an odd dimensional manifold, which vanishes on a commutators. When restricted to the algebra of odd class classical pseudo-differential operators our trace coincides with the canonical trace of Kontsevich and Vishik. Using the new trace we construct a new determinant of odd class classical elliptic pseu...
متن کاملKoszul duality in deformation quantization and Tamarkin’s approach to Kontsevich formality
Let α be a quadratic Poisson bivector on a vector space V . Then one can also consider α as a quadratic Poisson bivector on the vector space V ∗[1]. Fixed a universal deformation quantization (prediction of some complex weights to all Kontsevich graphs [K97]), we have deformation quantization of the both algebras S(V ∗) and Λ(V ). These are graded quadratic algebras, and therefore Koszul algebr...
متن کامل